首页> 外文期刊>Journal of Parallel and Distributed Computing >Towards autonomic data management for staging-based coupled scientific workflows
【24h】

Towards autonomic data management for staging-based coupled scientific workflows

机译:对基于分期的耦合科学工作流程的自主数据管理

获取原文
获取原文并翻译 | 示例

摘要

Emerging scientific workflows running at extreme scale are composed of multiple applications that interact and exchange data at runtime. While staging-based approaches, e.g. in-situ/in-transit processing, are promising, dynamic behaviors (e.g. data volumes and distributions) in coupled applications and varying resource constraints at runtime make the efficient use of these techniques challenging. Addressing these challenges requires fundamental changes in the way that workflows are executed at runtime. Specifically, it is required to monitor the operating environment and running applications, and then adapt and tune the application behaviors and resource allocations at runtime while meeting the data management requirements and constraints. In this paper, we propose a policy-based autonomic data management (ADM) approach that can adaptively respond at runtime to dynamic data management requirements. We first formulate the schematic abstraction of this ADM approach including its conceptual model and system elements. Then, we explore the realization of ADM runtime and demonstrate how to achieve adaptations in a cross-layer manner with pre-defined autonomic policies. We also prototype our ADM approach and evaluate its performance on the Intrepid IBM-BlueGene and Titan Cray-XK7 systems using Chombo-based AMR applications and a visualization application. The experimental results demonstrate its effectiveness in meeting user defined objectives and accelerating overall scientific discovery.
机译:以极度速度运行的新兴科学工作流由运行时在运行时交互和交换数据的多个应用程序组成。虽然基于分期的方法,例如,原位/在运输过程中,耦合应用中的有希望的动态行为(例如数据卷和分布)和运行时的不同资源限制使得有效地利用这些技术具有挑战性。解决这些挑战需要在运行时在运行时执行的工作流程的基本变化。具体而言,需要监视操作环境和运行应用程序,然后在满足数据管理要求和约束时在运行时调整和调整运行时的应用程序行为和资源分配。在本文中,我们提出了一种基于策略的自主数据管理(ADM)方法,可以在运行时自适应地响应动态数据管理要求。我们首先制定了该ADM方法的示意图,包括其概念模型和系统元素。然后,我们探讨了ADM运行时的实现,并演示如何以预定义的自主策略以跨层方式实现调整。我们还使用Chombo的AMR应用程序和可视化应用程序对我们的ADM方法进行原型并评估INDANID IBM-Bluegene和Titan Cray-XK7系统的性能。实验结果表明其在满足用户定义目标和加速整体科学发现方面的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号