【24h】

Search direction improvement for gradient-based optimization problems

机译:搜索方向改进,用于基于梯度的优化问题

获取原文
获取原文并翻译 | 示例

摘要

Most gradient-based optimization algorithms calculate the search vector using the gradient or the Hessian of the objective function. This causes the optimization algorithm to perform poorly in cases where the dimensionality of the objective function is less than that of the problem. Though some methods like the Modified Method of Feasible Directions tend to overcome this shortcoming, they again perform poorly in situations of competing constraints. This paper introduces a simple modification in the calculation of the search vector that not only provides significant improvements in the solutions of optimization problems but also helps to reduce or, in some cases, overcome the problem of competing constraints.
机译:大多数基于梯度的优化算法都使用目标函数的梯度或Hessian计算搜索向量。在目标函数的维数小于问题维数的情况下,这会使优化算法的性能下降。尽管某些方法(如“可行方向的修改方法”)可以克服这一缺点,但在竞争性约束的情况下,它们的效果仍然很差。本文在搜索向量的计算中引入了一种简单的修改方法,该方法不仅可以显着改善优化问题的解决方案,而且还可以减少或在某些情况下克服竞争性约束问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号