首页> 外文会议>International Conference on Computational Science and Its Applications(ICCSA 2007) pt.3; 20070826-29; Kuala Lumpur(MY) >Non-linear Least Squares Features Transformation for Improving the Performance of Probabilistic Neural Networks in Classifying Human Brain Tumors on MRI
【24h】

Non-linear Least Squares Features Transformation for Improving the Performance of Probabilistic Neural Networks in Classifying Human Brain Tumors on MRI

机译:非线性最小二乘特征变换可提高概率神经网络在MRI上对人脑肿瘤分类的性能

获取原文
获取原文并翻译 | 示例

摘要

The aim of the present study was to design, implement, and evaluate a software system for discriminating between metastases, meningiomas, and gliomas on MRI. The proposed classifier is a modified probabilistic neural network (PNN), incorporating a second degree least squares features transformation (LSFT) into the PNN classifier. Thirty-six textural features were extracted from each one of 75 Tl-weighted post-contrast MR images (24 metastases, 21 meningiomas, and 30 gliomas). Classification performance was evaluated employing the leave-one-out method and for all possible textural feature combinations. LSFT enhanced the performance of the PNN, achieving 93.33% in discriminating between the three major types of human brain tumors, against 89.33% scored by the PNN alone. Best feature combination for achieving highest discrimination power included the mean value and entropy, which reflect specific properties of texture, I.e. Signal strength and inhomogeneity. LSFT improved PNN performance, increased class separability, and resulted in dimensionality reduction.
机译:本研究的目的是设计,实施和评估在MRI上区分转移,脑膜瘤和神经胶质瘤的软件系统。拟议的分类器是一种改进的概率神经网络(PNN),该方法将二阶最小二乘特征变换(LSFT)纳入了PNN分类器。从75份T1加权对比后MR图像(24处转移,21例脑膜瘤和30例脑胶质瘤)中提取了36处纹理特征。使用留一法和所有可能的纹理特征组合来评估分类性能。 LSFT增强了PNN的性能,在区分三种主要类型的人脑肿瘤方面达到93.33%,而仅PNN得分为89.33%。达到最高辨别力的最佳特征组合包括均值和熵,它们反映了纹理的特定属性,即信号强度和不均匀性。 LSFT改善了PNN性能,增加了类可分离性,并导致尺寸减小。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号