首页> 外文会议>Advances in Computational Methods in Sciences and Engineering 2005 vol.4A; Lecture Series on Computer and Computational Sciences; vol.4A >Numerical Solution of the two-dimensional time independent Schroedinger Equation by symplectic schemes based on Magnus Expansion
【24h】

Numerical Solution of the two-dimensional time independent Schroedinger Equation by symplectic schemes based on Magnus Expansion

机译:基于马格努斯展开的辛格式的二维时变薛定inger方程的数值求解

获取原文

摘要

The solution of the two-dimensional time-independent Schroedinger equation is considered by partial discretisation. The discretized problem is treated as an ordinary differential equation problem and solved numerically by symplectic methods based on Magnus expansion. The problem is then transformed into an algebraic eigenvalue problem involving real, symmetric matrices.
机译:通过局部离散化来考虑二维与时间无关的Schroedinger方程的解。离散问题被视为常微分方程问题,并通过基于Magnus展开的辛方法进行数值求解。然后将该问题转换为涉及实数对称矩阵的代数特征值问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号