首页> 外文会议>International Conference on Artificial Neural Nets and Genetic Algorithms, 2001, Prague, Czech Republic >A Genetic Designed Beta Basis Function Neural Network for Approximating Multi-Variables Functions
【24h】

A Genetic Designed Beta Basis Function Neural Network for Approximating Multi-Variables Functions

机译:遗传设计的贝塔基函数神经网络,用于逼近多变量函数

获取原文
获取原文并翻译 | 示例

摘要

We propose in this paper a new genetic algorithm for Beta basis function neural networks (BBFNN). The proprieties of this genetic algorithm are the representation used and the ability to obtain the optimal structure of the BBFNN for approximating a multi-variable function. Each network is coded as a matrix for which the number of rows is equal to the number of parameters in the function. The genetic algorithm operators change the number of neurons in the hidden layer. Some applications to functions with one and two variables are considered to demonstrate the performance of the BBFNN and of their genetic algorithm based design.
机译:我们在本文中提出了一种用于Beta基函数神经网络(BBFNN)的新遗传算法。该遗传算法的优点是所使用的表示形式以及获得用于近似多变量函数的BBFNN最佳结构的能力。每个网络被编码为矩阵,其行数等于函数中的参数数。遗传算法运算符可更改隐藏层中神经元的数量。考虑了具有一个和两个变量的函数的一些应用,以证明BBFNN及其基于遗传算法的设计的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号