首页> 外文会议>International Colloquium on Automata, Languages and Programming(ICALP 2006); 20060710-14; Venice(IT) >How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost Tree Cover
【24h】

How to Trim an MST: A 2-Approximation Algorithm for Minimum Cost Tree Cover

机译:如何修剪MST:最小成本树覆盖的2近似算法

获取原文
获取原文并翻译 | 示例

摘要

The minimum cost tree cover problem is to compute a minimum cost tree Tina given connected graph G with costs on the edges, such that the vertices of T form a vertex cover for G. The problem is supposed to arise in applications of vertex cover and edge dominating set when connectivity is additionally required in solutions. Whereas a linear-time 2-approximation algorithm for the unweighted case has been known for quite a while, the best approximation ratio known for the weighted case is 3. Moreover, the known 3-approximation algorithm for such case is far from practical in its efficiency. In this paper we present a fast, purely combinatorial 2-approximation algorithm for the minimum cost tree cover problem. It constructs a good approximate solution by trimming some leaves within a minimum spanning tree (MST), and to determine which leaves to trim, it uses both of the primal-dual schema and the local ratio technique in an interlaced fashion.
机译:最小成本树覆盖问题是在给定连接图G且边缘具有成本的情况下,计算最小成本树Tina,以使T的顶点形成G的顶点覆盖。假设该问题会出现在顶点覆盖和边的应用中解决方案中还需要连接时的主导集。尽管对于不加权情况的线性时间2近似算法已经知道了一段时间,但对于加权情况已知的最佳近似比是3。而且,对于这种情况,已知的3近似算法在其实际应用中还远远不够实用。效率。在本文中,我们提出了一种用于最小代价树覆盖问题的快速,纯粹组合的2-近似算法。它通过修剪最小生成树(MST)中的一些叶子并确定要修剪的叶子来构造一个好的近似解决方案,它以交错方式使用原始对偶模式和局部比率技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号