【24h】

Social restricted Boltzmann Machine: Human behavior prediction in health social networks

机译:受社会限制的玻尔兹曼机器:健康社交网络中的人类行为预测

获取原文

摘要

Modeling and predicting human behaviors, such as the activity level and intensity, is the key to prevent the cascades of obesity, and help spread wellness and healthy behavior in a social network. The user diversity, dynamic behaviors, and hidden social influences make the problem more challenging. In this work, we propose a deep learning model named Social Restricted Boltzmann Machine (SRBM) for human behavior modeling and prediction in health social networks. In the proposed SRBM model, we naturally incorporate self-motivation, implicit and explicit social influences, and environmental events together into three layers which are historical, visible, and hidden layers. The interactions among these behavior determinants are naturally simulated through parameters connecting these layers together. The contrastive divergence and back-propagation algorithms are employed for training the model. A comprehensive experiment on real and synthetic data has shown the great effectiveness of our deep learning model compared with conventional methods.
机译:建模和预测人类行为(例如活动水平和强度)是防止肥胖症级联反应并帮助在社交网络中传播健康和健康行为的关键。用户的多样性,动态行为和隐藏的社会影响使问题更具挑战性。在这项工作中,我们提出了一种名为“社交受限玻尔兹曼机(SRBM)”的深度学习模型,用于健康社交网络中的人类行为建模和预测。在提出的SRBM模型中,我们自然地将自我激励,内隐和外显的社会影响以及环境事件合并为历史,可见和隐藏的三层。这些行为决定因素之间的相互作用自然是通过将这些层连接在一起的参数来模拟的。对比发散和反向传播算法用于训练模型。一项针对真实数据和合成数据的综合实验表明,与传统方法相比,我们的深度学习模型非常有效。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号