首页> 外文会议>International Workshop on Intelligent Systems and Applications;ISA 2009 >Adaptive Template Matching Based on Improved Ant Colony Optimization
【24h】

Adaptive Template Matching Based on Improved Ant Colony Optimization

机译:基于改进蚁群算法的自适应模板匹配

获取原文

摘要

Image matching is a basic and crucial process for imagine processing. Ant colony optimization (ACO) is a bio-inspired optimization algorithm, it has strong robustness and easy to combine with other problems. However, the basic ACO algorithm has disadvantages of stagnation, and easy to fall into local best. A novel approach to the adaptive template matching based on an improved ACO algorithm has been proposed in this paper, and coarse-fine two-stage searching methods to effectively solve the problem of finding the peak point of the correlation functions accurately. An improved ACO model is proposed to search in the coarse searching stage to decrease the time for image matching process. Then, the position of the template image in the matching image can be found under retaining a certain precision in the fine searching stage. Series simulation experiments have demonstrated the feasibility and effectiveness of the proposed approach.
机译:图像匹配是图像处理的基本且至关重要的过程。蚁群优化(ACO)是一种受生物启发的优化算法,它具有很强的鲁棒性并且易于与其他问题组合。但是,基本的ACO算法具有停滞的缺点,并且容易陷入局部最佳状态。提出了一种基于改进的ACO算法的自适应模板匹配新方法,并提出了粗细两阶段搜索方法,有效地解决了精确找到相关函数峰值的问题。提出了一种改进的ACO模型在粗略搜索阶段进行搜索,以减少图像匹配过程的时间。然后,可以在精细搜索阶段在保持一定精度的情况下找到模板图像在匹配图像中的位置。系列仿真实验证明了该方法的可行性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号