首页> 外文会议>International workshop on brainlesion;International conference on medical imaging computing for computer assisted intervention >Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model: A Novel Approach Using 3D UNET Based Deep Convolutional Neural Network for Predicting Survival in Gliomas
【24h】

Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model: A Novel Approach Using 3D UNET Based Deep Convolutional Neural Network for Predicting Survival in Gliomas

机译:胶质瘤深度学习放射学算法(DRAG)模型:使用基于3D UNET的深度卷积神经网络预测胶质瘤存活率的新方法

获取原文

摘要

Automated segmentation of brain tumors in multi-channel Magnetic Resonance Image (MRI) is a challenging task. Heterogeneous appearance of brain tumors in MRI poses critical challenges in diagnosis, prognosis and survival prediction. In this paper, we present a novel approach for glioma tumor segmentation and survival prediction with Deep Learning Radiomics Algorithm for Gliomas (DRAG) Model using 3D patch based U-Net model in Brain Tumor Segmentation (BraTS) challenge 2018. Radiomics feature extraction and classification was done on segmented tumor for overall survival (OS) prediction task. Preliminary results of DRAG model on BraTS 2018 validation dataset demonstrated that the proposed method achieved a good performance with Dice scores as 0.88, 0.83 and 0.75 for whole tumor, tumor core and enhancing tumor, respectively. For survival prediction, 57.1% accuracy was achieved on the validation dataset. The proposed DRAG model was one of the top performing models and accomplished third place for OS prediction task in BraTS 2018 challenge.
机译:在多通道磁共振图像(MRI)中自动分割脑部肿瘤是一项艰巨的任务。 MRI中脑肿瘤的异质出现对诊断,预后和生存预测提出了严峻的挑战。在本文中,我们提出了一种新方法,用于胶质瘤肿瘤分割和生存预测的胶质瘤深度学习放射学算法(DRAG)模型,该方法使用基于3D补丁的U-Net模型在2018年脑肿瘤分割(BraTS)挑战中进行。放射学特征提取和分类在分割的肿瘤上进行总体生存(OS)预测任务。 DRAG模型在BraTS 2018验证数据集上的初步结果表明,所提出的方法在整个肿瘤,肿瘤核心和增强性肿瘤上的Dice得分分别为0.88、0.83和0.75,取得了良好的性能。对于生存预测,验证数据集的准确性达到57.1%。提出的DRAG模型是BraTS 2018挑战赛中表现最好的模型之一,在OS预测任务中排名第三。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号