首页> 外文会议>International Workshop on Artificial Intelligence in Radiation Therapy;International Conference on Medical Image Computing and Computer Assisted Intervention >Dose Distribution Prediction for Optimal Treamtment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma
【24h】

Dose Distribution Prediction for Optimal Treamtment of Modern External Beam Radiation Therapy for Nasopharyngeal Carcinoma

机译:鼻咽癌现代外束放射治疗最佳治疗的剂量分布预测

获取原文

摘要

In Intensity-modulated radiation therapy, the planning of the optimal dose distribution for a patient is a complex and time-consuming process. This paper proposes a new automatic method for predicting of dose distribution of Nasopharyngeal carcinoma (NPC) from contoured computer tomography (CT) images. The proposed method consists of two phases: (1) predicting the 2D optimal dose images of each beam from contoured CT images of a patient by convolutional deep neural network model, called OTNet, and (2) integrating the optimal dose images of all the beams to predict the dose distribution for the patient. From the experiments using CT images of 80 NPC patients, our proposed method achieves a good performance for predicting dose distribution compared with conventional predicted dose distribution methods.
机译:在强度调制放射治疗中,为患者规划最佳剂量分布是一个复杂且耗时的过程。本文提出了一种新的自动方法,用于根据轮廓计算机断层扫描(CT)图像预测鼻咽癌(NPC)的剂量分布。所提出的方法包括两个阶段:(1)通过卷积深度神经网络模型OTNet从患者的轮廓CT图像预测每个光束的2D最佳剂量图像,以及(2)整合所有光束的最佳剂量图像预测患者的剂量分布。通过使用80位NPC患者的CT图像进行的实验,与传统的预测剂量分布方法相比,我们提出的方法在预测剂量分布方面取得了良好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号