首页> 外文会议>International Workshop on Artificial Intelligence for Requirements Engineering >Finding Component State Transition Model Elements Using Neural Networks: An Empirical Study
【24h】

Finding Component State Transition Model Elements Using Neural Networks: An Empirical Study

机译:使用神经网络寻找组件状态转换模型元素的实证研究

获取原文

摘要

Use cases are popular for writing specifications of a system. However, despite their semi-structured nature, it is often time consuming and error-prone to generate component state transition diagrams from use case documents as it is done manually. While attempts to automate model generation from requirements have increased with the advent of deep neural networks (DNNs), there are limited studies in which a neural network architecture successfully extracts information used to construct a component state transition diagram from use cases. In this paper, we investigate the effectiveness of four different neural network architectures using glove and dependency embeddings to find model elements of component state transition diagrams from use case descriptions. Our results from the study show that we may achieve performance equivalent to humans with F1-scores greater than 0.80 for each model element on test data.
机译:用例在编写系统规范时很流行。但是,尽管它们是半结构化的,但是由于它是手动完成的,所以从用例文档中生成组件状态转换图通常很耗时且容易出错。虽然随着深度神经网络(DNN)的出现,从需求自动生成模型的尝试有所增加,但在有限的研究中,神经网络体系结构成功地从用例中提取了用于构建组件状态转换图的信息。在本文中,我们研究了四种不同的神经网络体系结构的有效性,这些体系结构使用手套和依赖性嵌入从用例描述中找到组件状态转换图的模型元素。我们的研究结果表明,对于测试数据中的每个模型元素,我们的F1得分都可以超过人类,达到0.80。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号