首页> 外文会议>International Workshop on Acoustic Signal Enhancement >Time-Frequency Masking Strategies for Single-Channel Low-Latency Speech Enhancement Using Neural Networks
【24h】

Time-Frequency Masking Strategies for Single-Channel Low-Latency Speech Enhancement Using Neural Networks

机译:神经网络的单通道低延迟语音增强的时频掩蔽策略

获取原文

摘要

This paper presents a low-latency neural network based speech enhancement system. Low-latency operation is critical for speech communication applications. The system uses the time-frequency (TF) masking approach to retain speech and remove the non-speech content from the observed signal. The ideal TF mask are obtained by supervised training of neural networks. As the main contribution different neural network models are experimentally compared to investigate computational complexity and speech enhancement performance. The proposed system is trained and tested on noisy speech data where signal-to-noise ratio (SNR) ranges from -5 dB to +5 dB and the results show significant reduction of non-speech content in the resulting signal while still meeting a low-latency operation criterion, which is here considered to be less than 20 ms.
机译:本文提出了一种基于低延迟神经网络的语音增强系统。低延迟操作对于语音通信应用至关重要。该系统使用时频(TF)屏蔽方法来保留语音并从观察到的信号中去除非语音内容。理想的TF蒙版是通过神经网络的监督训练而获得的。作为主要贡献,对不同的神经网络模型进行了实验比较,以研究计算复杂性和语音增强性能。所提议的系统是在信噪比(SNR)从-5 dB到+5 dB的嘈杂语音数据上进行训练和测试的,结果表明所产生信号中的非语音内容显着减少,同时仍然满足较低的要求-等待时间操作标准,在这里被认为小于20 ms。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号