首页> 外文会议>International symposium on search-based software engineering >Constructing Search Spaces for Search-Based Software Testing Using Neural Networks
【24h】

Constructing Search Spaces for Search-Based Software Testing Using Neural Networks

机译:使用神经网络构建用于基于搜索的软件测试的搜索空间

获取原文

摘要

A central requirement for any Search-Based Software Testing (SBST) technique is a convenient and meaningful fitness landscape. Whether one follows a targeted or a diversification driven strategy, a search landscape needs to be large, continuous, easy to construct and representative of the underlying property of interest. Constructing such a landscape is not a trivial task often requiring a significant manual effort by an expert. We present an approach for constructing meaningful and convenient fitness landscapes using neural networks (NN) - for targeted and diversification strategies alike. We suggest that output of an NN predictor can be interpreted as a fitness for a targeted strategy. The NN is trained on a corpus of execution traces and various properties of interest, prior to searching. During search, the trained NN is queried to predict an estimate of a property given an execution trace. The outputs of the NN form a convenient search space which is strongly representative of a number of properties. We believe that such a search space can be readily used for driving a search towards specific properties of interest. For a diversification strategy, we propose the use of an autoencoder; a mechanism for compacting data into an n-dimensional 'latent' space. In it, datapoints are arranged according to the similarity of their salient features. We show that a latent space of execution traces possesses characteristics of a convenient search landscape: it is continuous, large and crucially, it defines a notion of similarity to arbitrary observations.
机译:任何基于搜索的软件测试(SBST)技术的核心要求是便捷且有意义的适应性环境。无论是遵循有针对性的策略还是采用多元化驱动的策略,搜索领域都需要庞大,连续,易于构建并代表感兴趣的潜在属性。构造这样的景观并不是一件容易的事,通常需要专家付出大量的精力。我们提出了一种使用神经网络(NN)构建有意义且方便的健身景观的方法-既有针对性又有多元化的策略。我们建议将NN预测变量的输出解释为适合目标策略。在搜索之前,对NN进行执行轨迹和各种感兴趣的属性的训练。在搜索过程中,查询给定的NN以预测给定执行轨迹的属性估计。 NN的输出形成方便的搜索空间,该搜索空间强烈代表了许多属性。我们相信,这样的搜索空间可以很容易地用于推动针对特定感兴趣属性的搜索。对于多样化策略,我们建议使用自动编码器;一种将数据压缩到n维“潜在”空间的机制。其中,数据点是根据其显着特征的相似性进行排列的。我们证明执行痕迹的潜在空间具有便捷的搜索范围的特征:它是连续的,庞大的且至关重要的,它定义了与任意观察相似的概念。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号