首页> 外文会议>International Symposium on Multidisciplinary Studies and Innovative Technologies >The Effect of Different Optimization Techniques on End-to-End Turkish Speech Recognition Systems that use Connectionist Temporal Classification
【24h】

The Effect of Different Optimization Techniques on End-to-End Turkish Speech Recognition Systems that use Connectionist Temporal Classification

机译:不同的优化技术对使用连接主义时间分类的端到端土耳其语音识别系统的影响

获取原文

摘要

In the production of acoustic models for speech recognition applications, the use of Long Short Term Memory(LSTM) based Recurrent Neural Network(RNN) has begun to get better results than the use of Gaussian Mixture Model(GMM). The creation of GMM-based acoustic models is prolonging the deep learning process due to the need for aligned Hidden Markov Model(HMM). As a solution to this problem, another method to generate acoustic models is proposed that is based on Connectionist Temporal Classification(CTC). In this study, a CTC based model is created and the effect of different optimization techniques on the classification performance is compared. These tests were applied on Turkish speech datasets to determine the best optimization techniques to be used in speech recognition applications. Our evaluation results showed that GradientDescent, ProximalGradientDescent and RMSPROP produce better results than other algorithms.
机译:在用于语音识别应用的声学模型的生产中,与基于高斯混合模型(GMM)的使用相比,基于长短期记忆(LSTM)的递归神经网络(RNN)的使用已开始获得更好的结果。由于需要对齐的隐马尔可夫模型(HMM),因此基于GMM的声学模型的创建正在延长深度学习过程。为了解决这个问题,提出了另一种基于连接时间分类法的声学模型生成方法。在这项研究中,创建了一个基于CTC的模型,并比较了不同优化技术对分类性能的影响。将这些测试应用于土耳其语音数据集,以确定将在语音识别应用程序中使用的最佳优化技术。我们的评估结果表明,GradientDescent,ProximalGradientDescent和RMSPROP产生的结果优于其他算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号