首页> 外文会议>International symposium on graph drawing and network visualization >Ortho-Polygon Visibility Representations of 3-Connected 1-Plane Graphs
【24h】

Ortho-Polygon Visibility Representations of 3-Connected 1-Plane Graphs

机译:3连通1平面图的正多边形可视性表示

获取原文

摘要

An ortho-polygon visibility representation Γ of a 1-plane graph G (OPVR of G) is an embedding preserving drawing that maps each vertex of G to a distinct orthogonal polygon and each edge of G to a vertical or horizontal visibility between its end-vertices. The representation Γ has vertex complexity k if every polygon of Γ has at most k reflex corners. It is known that 3-connected 1-plane graphs admit an OPVR with vertex complexity at most twelve, while vertex complexity at least two may be required in some cases. In this paper, we reduce this gap by showing that vertex complexity five is always sufficient, while vertex complexity four may be required in some cases. These results are based on the study of the combinatorial properties of the B-, T-, and W-configurations in 3-connected 1-plane graphs. An implication of the upper bound is the existence of a O(n~(10/7))-time drawing algorithm that computes an OPVR of an n-vertex 3-connected 1-plane graph on an integer grid of size O(n) × O(n) and with vertex complexity at most five.
机译:1平面图G(G的OPVR)的正多边形可见性表示Γ是保留嵌入的图形,该图将G的每个顶点映射到不同的正交多边形,G的每个边缘映射到其端部之间的垂直或水平可见性。顶点。如果Γ的每个多边形最多具有k个反射角,则表示Γ的顶点复杂度为k。已知3连通1平面图允许具有最多12个顶点复杂度的OPVR,而在某些情况下可能需要至少2个顶点复杂度。在本文中,我们通过显示顶点复杂度5始终足够,而在某些情况下可能需要顶点复杂度4来缩小了差距。这些结果基于对3连通1平面图中B,T和W构型的组合特性的研究。上限的含义是存在O(n〜(10/7))时间绘制算法,该算法可在大小为O(n的整数网格)上计算n顶点3连通1平面图的OPVR。 )×O(n),且顶点复杂度最多为5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号