首页> 外文会议>International Symposium on Environment-Friendly Energies and Applications >Flatness-based Adaptive Control of Synchronous Reluctance Machines with Output Feedback
【24h】

Flatness-based Adaptive Control of Synchronous Reluctance Machines with Output Feedback

机译:基于平面度的带输出反馈的同步磁阻电机自适应控制

获取原文

摘要

The present article proposes an adaptive neurofuzzy control method that is capable of compensating for model uncertainty and parametric changes of Synchronous Reluctance Machines (SRMs), as well as for lack of measurements for the SRMs state vector elements. First it is proven that the SRM's model is a differentially flat one. This means that all its state variables and its control inputs can be written as differential functions of key state variables which are the so-called flat outputs. Moreover, this implies that the flat output and its derivatives are linearly independent. By exploiting differential flatness properties it is shown that the 4-th order SRM model can be transformed into the linear canonical form. For the latter description, the new control inputs comprise unknown nonlinear functions which can be identified with the use of neurofuzzy approximators. The estimated dynamics of the electric machine is used by a feedback controller thus establishing an indirect adaptive control scheme. Moreover, to improve the robustness of the control loop a supplementary control term is computed using H-infinity control theory. Another problem that has to be dealt with comes from the inability to measure the complete state vector of the SRM. Thus, a state-observer is implemented in the control loop. The stability of the considered observer-based adaptive control approach is proven using Lyapunov analysis.
机译:本文提出了一种自适应神经模糊控制方法,该方法能够补偿模型不确定性和同步磁阻机(SRM)的参数变化,以及对于SRM状态向量元素的缺乏测量。首先,已证明SRM的模型是差分平坦模型。这意味着其所有状态变量及其控制输入都可以写成关键状态变量的微分函数,这些关键状态变量就是所谓的平面输出。此外,这意味着平坦输出及其导数是线性独立的。通过利用微分平坦度特性,表明可以将四阶SRM模型转换为线性规范形式。对于后面的描述,新的控制输入包括未知的非线性函数,可以使用神经模糊近似器对其进行识别。电机的估计动力学由反馈控制器使用,从而建立了间接自适应控制方案。此外,为了提高控制回路的鲁棒性,使用H-无穷大控制理论计算了一个补充控制项。必须解决的另一个问题是无法测量SRM的完整状态向量。因此,在控制回路中实现了状态观察器。使用Lyapunov分析证明了所考虑的基于观察者的自适应控制方法的稳定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号