首页> 外文会议>International Symposium on Computer Architecture and High Performance Computing >Partitioning Convolutional Neural Networks for Inference on Constrained Internet-of-Things Devices
【24h】

Partitioning Convolutional Neural Networks for Inference on Constrained Internet-of-Things Devices

机译:划分卷积神经网络以推断受限物联网设备

获取原文

摘要

With the prospects of a world in which the IoT will be pervasive in a near future, the great amount of data produced by its devices will have to be processed and interpreted in an efficient and intelligent way. One approach to do that is the use of fog computing, in which the network infrastructure and the devices themselves can process data. Deep learning techniques have been successfully applied to the interpretation of the kind of data generated by the IoT, however, even the inference execution of convolutional neural networks may be computationally costly when resource-limited devices are considered. In order to enable the execution of neural network models on resource-constrained IoT systems, the code may be partitioned and distributed among multiple devices. Different partitioning approaches are possible, nonetheless, some of them increase the amount of communication that needs to be performed between the IoT devices. In this work, we propose KLP, a Kernighan-and-Lin-based partitioning algorithm that partitions neural network models for efficient distributed execution on multiple IoT devices. Our results show that KLP is capable of producing partitions that require up to 4.5 times less communication than partitioning approaches used by TensorFlow and other frameworks.
机译:鉴于在不久的将来物联网将普及的世界的前景,其设备产生的大量数据将必须以有效和智能的方式进行处理和解释。一种实现方法是使用雾计算,其中网络基础结构和设备本身可以处理数据。深度学习技术已成功应用于IoT生成的数据类型的解释,但是,当考虑到资源受限的设备时,即使卷积神经网络的推理执行也可能在计算上昂贵。为了能够在资源受限的IoT系统上执行神经网络模型,可以在多个设备之间对代码进行分区和分发。可以使用不同的分区方法,但是其中一些方法会增加IoT设备之间需要执行的通信量。在这项工作中,我们提出了KLP,一种基于Kernighan和Lin的分区算法,该算法对神经网络模型进行分区,以便在多个IoT设备上高效地执行分布式执行。我们的结果表明,与TensorFlow和其他框架使用的分区方法相比,KLP能够生成所需的通讯量最多减少4.5倍的分区。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号