首页> 外文期刊>Computer networks >Convolutional Neural Networks for forecasting flood process in Internet-of-Things enabled smart city
【24h】

Convolutional Neural Networks for forecasting flood process in Internet-of-Things enabled smart city

机译:卷积神经网络,用于预测智能城市互联网上的洪水过程

获取原文
获取原文并翻译 | 示例

摘要

© 2020 Elsevier B.V.With the advancement of water conservancy informatization based on Internet of Things (IoT), the hydrological data are increasingly enriched. As a result, more and more algorithms and methods relying on deep learning are introduced in the flood forecasting. Considering the ability of deep learning on complex features extraction, we proposed a flood process forecasting model based on Convolution Neural Network (CNN) with two-dimension (2D) convolutional operation. At first, we imported the rainfall spatial–temporal features by gridding the Xixian basin. After that, we processed the data from Digital Elevation Model (DEM) as the geographical feature and employed the historical streamflow process of Xixian basin as the trend feature. Next, extensive experiments were implemented to determine the optimal hyper-parameters of the proposed CNN flood process forecasting model. Numerical results show that our proposed model demonstrated a better accuracy for predicting the flood peak and arrival occasion, with a 24-hour and 36-hour lead time respectively.
机译:©2020 Elsevier B.V.基于事物互联网(物联网)的水利信息化进步,水文数据越来越丰富。结果,在洪水预测中引入了越来越多的算法和方法依赖深度学习。考虑到深度学习对复杂特征提取的能力,我们提出了一种基于卷积神经网络(CNN)的洪水过程预测模型,具有两维(2D)卷积运行。首先,我们通过网格网格进口降雨空间特征。之后,我们将数据从数字高程模型(DEM)处理为地理特征,并采用了XIXIAN盆地的历史流流程作为趋势特征。接下来,实施了广泛的实验以确定所提出的CNN洪水过程预测模型的最佳超参数。数值结果表明,我们的拟议模型表明了预测洪水峰值和到达场合的更好准确性,分别为24小时和36小时的交货时间。

著录项

  • 来源
    《Computer networks》 |2021年第26期|14.1-14.12|共12页
  • 作者单位

    State Key Laboratory of Integrated Services Networks Xidian University;

    State Key Laboratory of Integrated Services Networks Xidian University;

    State Key Laboratory of Integrated Services Networks Xidian University;

    State Key Laboratory of Integrated Services Networks Xidian University;

    The School of Information and Safety Engineering Zhongnan University of Economics and Law;

    Ministry of water resources of China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CNN; Deep learning; Flood forecasting; Geographical feature; Spatial–temporal feature;

    机译:CNN;深入学习;洪水预测;地理特征;空间 - 时间特征;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号