首页> 外文会议>International Symposium on Algorithmic Game Theory >On the Existence of Nash Equilibrium in Games with Resource-Bounded Players
【24h】

On the Existence of Nash Equilibrium in Games with Resource-Bounded Players

机译:资源受限玩家游戏中纳什均衡的存在性

获取原文

摘要

We consider computational games, sequences of games g = [G_1,G_2,...) where, for all n, G_n has the same set of players. Computational games arise in electronic money systems such as Bitcoin, in cryptographic protocols, and in the study of generative adversarial networks in machine learning. Assuming that one-way functions exist, we prove that there is 2-player zero-sum computational game g such that, for all n, the size of the action space in G_n is polynomial in n and the utility function in G_n is computable in time polynomial in n, and yet there is no ∈-Nash equilibrium if players are restricted to using strategies computable By polynomial-time Turing machines, where we use a notion of Nash equilibrium that is tailored to computational games. We also show that an ∈-Nash equilibrium may not exist if players are constrained to perform at most T computational steps in each of the games in the sequence. On the other hand, we show that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an ∈-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a 'computational arms race', precluding the existence of equilibrium. They also point to inherent limitations of concepts such as 'best response' and Nash equilibrium in games with resource-bounded players.
机译:我们考虑计算游戏,即游戏序列g = [G_1,G_2,...),其中,对于所有n,G_n具有相同的玩家集合。计算游戏出现在诸如比特币之类的电子货币系统中,在加密协议中以及在机器学习中生成对抗网络的研究中。假设存在单向函数,我们证明存在两人零和计算游戏g,使得对于所有n,G_n中的动作空间的大小在n中是多项式,而G_n中的效用函数可在n中计算。 n中的时间多项式,但是如果玩家被限制使用可通过多项式时间图灵机计算的策略,那么就没有ε-纳什均衡,这里我们使用针对计算博弈的纳什均衡概念。我们还表明,如果限制玩家在序列中的每个游戏中最多执行T个计算步骤,则可能不存在ε-纳什均衡。另一方面,我们表明如果玩家可以使用任意图灵机来计算其策略,那么每个计算游戏都具有∈-纳什均衡。这些结果可能会揭示出竞争环境,在这种环境下,更多的运行时间或更快的算法可导致“计算军备竞赛”,从而排除了平衡的存在。他们还指出了诸如“最佳反应”和纳什均衡等概念的固有局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号