【24h】

Cloud Recording for Diabetes Regulation of Blood Glucose Concentrations

机译:云记录对糖尿病血糖浓度的调节

获取原文

摘要

Treatment of type 1 diabetes has improved with the application of continuous glucose monitoring and insulin pumps. Human input is still typically required for estimation of food-intake and level of physical activities. Many individuals find accurate estimation and reporting difficult, resulting in a mismatch between the levels of insulin injection and the rise in concentration of blood glucose, which the insulin is meant to counter. Machine learning algorithms could help find historical patterns and interpret manual estimations of food-intake and physical activity, as well as sensor input from continuous glucose monitoring devices and insulin pump devices. Development of machine learning models requires data having sufficient volume and reliability. The Internet of Things (IoT) could be used to transfer diabetes related data to cloud databases, which could then be analyzed. This study has started development of such a system. Google Sheets was selected for the prototype cloud storage using Google Script API for HTTP RESTful data transfer. A simulation of food-intake, digestion and blood glucose regulation was used for development of the prototype system instead of physical devices and human subjects. The initial results show promise, but more development and testing is required.
机译:随着连续血糖监测和胰岛素泵的应用,对1型糖尿病的治疗已有所改善。估计食物摄入量和体育活动水平通常仍需要人工投入。许多人发现准确的估计和报告很困难,导致胰岛素注射水平和血糖浓度升高之间的不匹配,而胰岛素意在抵消这种升高。机器学习算法可以帮助找到历史模式并解释食物摄入量和体力活动的手动估计,以及来自连续葡萄糖监测设备和胰岛素泵设备的传感器输入。机器学习模型的开发需要具有足够数量和可靠性的数据。物联网(IoT)可用于将与糖尿病相关的数据传输到云数据库,然后可以对其进行分析。这项研究已经开始开发这种系统。使用Google Script API进行HTTP RESTful数据传输的原型云存储选择了Google Sheets。食物摄取,消化和血糖调节的模拟被用于原型系统的开发,而不是物理设备和人类受试者。初步结果显示出希望,但是还需要更多的开发和测试。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号