【24h】

DHCNN for Visibility Estimation in Foggy Weather Conditions

机译:DHCNN在有雾天气条件下的能见度估计

获取原文

摘要

This paper proposes a new method to estimate visibility range in strong foggy weather conditions on a basis of the Deep Hybrid Convolutional Neural Network (DHCNN). Our method is designed to estimate visibility distance from a digital camera in real-time but by way of using deep networks, it becomes a more challenging task to achieve outcomes quickly. In addition to this, prior to making any prediction, the model needs to pre-process each input so it will produce the desired results. As a consequence, our implemented prototype consists of two main stage: pre-processing inputs and classifier. Each of those stages concatenated sequentially. From the outer perspective, this demonstrates our model's architecture very deep and computationally costly. However, these two stages make our model more robust and help to learn only useful features from inputs. Since the first pre-processing stage identifies Region of Interest (ROI) and removes redundant parts from a high-resolution image and sends forward to classifier just ROI part in lower resolution. We witnessed great accuracy in estimating visibility on not only heavy foggy images but also the classification of hazy images fulfilled very accurately.
机译:本文提出了一种基于深层混合卷积神经网络(DHCNN)估算强雾天气条件下能见度范围的新方法。我们的方法旨在实时估计与数码相机的可见距离,但是通过使用深度网络,快速获得结果成为更具挑战性的任务。除此之外,在进行任何预测之前,模型需要对每个输入进行预处理,以便产生所需的结果。因此,我们实现的原型包含两个主要阶段:预处理输入和分类器。这些阶段中的每个阶段都是顺序连接的。从外部角度来看,这证明了我们模型的体系结构非常深入且计算成本很高。但是,这两个阶段使我们的模型更加健壮,并且仅有助于从输入中学习有用的功能。由于第一个预处理阶段识别感兴趣区域(ROI)并从高分辨率图像中删除多余的部分,然后仅将分辨率较低的ROI部分转发给分类器。我们目睹了在估计大雾图像的可见度方面非常准确,而且模糊图像的分类也非常准确。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号