首页> 外文会议>International ocean and polar engineering conference >A Method for Risk Assessment to Deep-Seated Catastrophic Landslides caused by Heavy Rain based on Artificial Intelligence and Mathematical Statistics
【24h】

A Method for Risk Assessment to Deep-Seated Catastrophic Landslides caused by Heavy Rain based on Artificial Intelligence and Mathematical Statistics

机译:基于人工智能和数理统计的大雨深部巨灾滑坡风险评估方法

获取原文

摘要

Sediment disasters caused by deep-seated catastrophic landslides havebecome a serious problem in Japan. Thus, it is necessary to identify theslopes with higher risk to deep-seated catastrophic landslides in order toestablish disaster prevention planning. In this study, a method based onboth self-organizing map and Hayashi's second method ofquantification is proposed. Slopes with higher risk to deep-seatedcatastrophic landslides are then identified by applying the proposedmethod to 142 slopes in Nara Prefecture. Furthermore, the slopes areprioritized according to the sample scores of Hayashi's second methodof quantification.
机译:在日本,由深层灾难性滑坡引起的泥沙灾害已成为一个严重的问题。因此,有必要确定对深部灾难性滑坡具有较高风险的斜坡,以建立防灾计划。本文提出了一种基于自组织图和林氏第二种量化方法的方法。然后,通过将拟议的方法应用于奈良县的142个斜坡,来确定对深部灾难性滑坡具有较高风险的斜坡。此外,根据林氏第二种量化方法的样本得分对斜率进行优先排序。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号