首页> 外文会议>International mineral processing congress;IMPC 2010 >ADDITIONAL ATTRACTIVE FORCE BETWEEN ALUMINA PARTICLES DUE TO LOW SOLUBILITY OF DICARBOXYLIC ACIDS
【24h】

ADDITIONAL ATTRACTIVE FORCE BETWEEN ALUMINA PARTICLES DUE TO LOW SOLUBILITY OF DICARBOXYLIC ACIDS

机译:由于双羧酸的溶解度低,氧化铝颗粒之间的附加吸引力

获取原文

摘要

Low molecular weight charged molecules are known to change the rheological behaviour of oxidedispersions dramatically. Here the isomers of muconic acid were used to investigate the effect ofmolecular structure and solubility on the bulk properties of alumina dispersions and the nanoscaleinteractions between alumina surfaces. The surface forces in dispersions were characterised by yieldstress while atomic force microscopy (AFM) was used to directly measure the force between a singlealumina particle and an alumina substrate. Both (trans, trans) TT and (cis, cis) CC muconic acidwere found to increase the yield stress of alumina slurries significantly at low pH when comparedto that of the pure alumina. TT muconic acid achieved a much higher yield stress than that of CCat high additive concentration. AFM measurements revealed force-distance features that indicate acapillary-type attraction between the adsorbed layers of TT muconic acid at high surface coverage.The force-distance curve for the CC muconic acid system displayed a capillary force and anelectrostatic force. At low pH, the muconic acids become less soluble resulting in the formation of an‘oily’ muconic acid phase between the interacting surfaces. This nanosized ‘oil’ phase is the sourceof the capillary force. The capillary force at high concentration of TT and CC muconic acid observedduring AFM measurements can account for the large increase of yield stress at low pH. The bridgingmechanism applicable in other cases is not found to be operating at high concentration of adsorbedmuconic acids. This study revealed that not only the molecular structure of these low molecularweight molecules plays a role in increasing the interparticle strength between metal oxide surfacesbut also their solubility and concentration are linked to an attraction between the surfaces.
机译:已知低分子量的带电分子会显着改变氧化物分散体的流变行为。在这里,粘康酸的异构体被用来研究分子结构和溶解度对氧化铝分散体的整体性能以及氧化铝表面之间的纳米级相互作用的影响。分散体中的表面力以屈服应力为特征,而原子力显微镜(AFM)用于直接测量单氧化铝颗粒和氧化铝基材之间的力。与纯氧化铝相比,在低pH下,发现(反式,反式)TT和(顺式,顺式)CC粘康酸都显着增加了氧化铝浆料的屈服应力。在高添加剂浓度下,TT粘康酸的屈服应力远高于CC。原子力显微镜的测量揭示了力-距离特征,表明在高表面覆盖率下TT粘康酸的吸附层之间存在毛细管型的吸引力.CC粘康酸系统的力-距离曲线显示了毛细作用力和静电作用力。在低pH下,粘康酸的溶解度降低,导致相互作用表面之间形成“油性”粘康酸相。纳米级的“油”相是毛细作用力的来源。在AFM测量过程中,在高浓度的TT和CC粘康酸下观察到的毛细作用力可以解释低pH下屈服应力的大幅增加。尚未发现适用于其他情况的桥接机制是在高浓度的粘康酸吸附下运行的。这项研究表明,这些低分子量分子的分子结构不仅在增加金属氧化物表面之间的颗粒间强度方面发挥作用,而且其溶解度和浓度也与表面之间的吸引力有关。

著录项

  • 来源
  • 会议地点 Brisbane(AU);Brisbane(AU)
  • 作者单位

    School of Mechanical Engineering University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia. Email: ejen@mech.uwa.edu.au;

    School of Mechanical Engineering University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia. Email: leong@mech.uwa.edu.au;

    School of Mechanical Engineering University of Western Australia 35 Stirling Highway Crawley WA 6009 Australia. Email: liu@mech.uwa.edu.au;

    Department Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200 Australia. Email: vince.craig@anu.edu.au;

    Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200 Australia. Email: rick.walsh@anu.edu.au;

    Department of Applied Mathematics Research School of Physics and Engineering The Australian National University Canberra ACT 0200 Australia. Email: shaun.howard@anu.edu.au;

    Nanochemistry Research Institute Department of Chemistry Curtin University of Technology GPO Box U1987 Perth WA 6845 Australia. Email: T.Becker@exchange.curtin.edu.au;

  • 会议组织
  • 原文格式 PDF
  • 正文语种
  • 中图分类
  • 关键词

    rheology; ; atomic force microscopy; ; dicarboxylic acid; ; capillary forces; ; atomic layer deposition; ; alumina;

    机译:流变学;原子力显微镜;二羧酸;毛细作用力;原子层沉积; ;氧化铝;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号