首页> 外文会议>International Joint Conference on Neural Networks;IJCNN 2009 >Self organizing maps for class discovery in the quantitative colocalization analysis feature space
【24h】

Self organizing maps for class discovery in the quantitative colocalization analysis feature space

机译:在定量共定位分析特征空间中用于类发现的自组织图

获取原文

摘要

Quantitative colocalization analysis in fluorescent microscopy imaging is a promising procedure used to perform functional protein analysis. Images acquired are degraded, and the features extracted are affected by this degradation. Moreover, the classification of the data becomes uncertain. In this paper, we address an application of SOM to a clustering problem formulated via feature extraction from multichannel fluorescence microscopy. First we describe the features that are extracted. Second, we use the PCA/KLT to un-correlate the data in the hyperplane; and Third, SOM network is trained to find and visualize the clusters (classes) in the data. The SOM model shows the existence of two classes, implying it is possible to design a classifier that distinguishes between images with co-localized structures and without them. We provide quantitative proof of the liability and discriminant capabilities of the feature space.
机译:荧光显微镜成像中的定量共定位分析是用于执行功能蛋白分析的有前途的程序。采集的图像质量下降,提取的特征受此质量下降影响。而且,数据的分类变得不确定。在本文中,我们解决了SOM在通过多通道荧光显微镜特征提取确定的聚类问题中的应用。首先,我们描述提取的特征。其次,我们使用PCA / KLT取消超平面中的数据相关。第三,对SOM网络进行训练,以发现和可视化数据中的群集(类)。 SOM模型显示了两个类的存在,这意味着可以设计一个分类器来区分具有共定位结构的图像和没有共定位结构的图像。我们提供特征空间的责任和判别能力的定量证明。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号