首页> 外文会议>International joint conference on artificial intelligence >Optimally Solving Dec-POMDPs as Continuous-State MDPs
【24h】

Optimally Solving Dec-POMDPs as Continuous-State MDPs

机译:最佳地将Dec-POMDP解决为连续状态MDP

获取原文

摘要

Optimally solving decentralized partially observable Markov decision processes (Dec-POMDPs) is a hard combinatorial problem.Current algorithms search through the space of full histories for each agent.Because of the doubly exponential growth in the number of policies in this space as the planning horizon increases,these methods quickly become intractable.However,in real world problems,computing policies over the full history space is often unnecessary.True histories experienced by the agents often lie near a structured,low-dimensional manifold embedded into the history space.We show that by transforming a Dec-POMDP into a continuous-state MDP,we are able to find and exploit these low-dimensional representations.Using this novel transformation,we can then apply powerful techniques for solving POMDPs and continuous-state MDPs.By combining a general search algorithm and dimension reduction based on feature selection,we introduce a novel approach to optimally solve problems with significantly longer planning horizons than previous methods.
机译:最优地解决分散的,部分可观察的马尔可夫决策过程(Dec-POMDPs)是一个困难的组合问题。当前的算法在每个代理的完整历史记录空间中进行搜索,因为该空间中的策略数量以计划范围成倍增长但是,在现实世界中,通常不需要在整个历史空间上计算策略。代理所经历的真实历史通常位于嵌入历史空间的结构化,低维流形附近。通过将Dec-POMDP转换为连续状态MDP,我们能够找到并利用这些低维表示。使用这种新颖的转换,我们可以应用强大的技术来解决POMDP和连续状态MDP。通用搜索算法和基于特征选择的降维,我们引入了一种新颖的方法来最优地解决具有重要意义的问题与以前的方法相比,规划时间更长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号