首页> 外文会议>International Institute of Statistics Management Engineering Symposium >An Improved Approach for Estimating Empirical likelihood Based on Random Walk Metropolis Algorithm
【24h】

An Improved Approach for Estimating Empirical likelihood Based on Random Walk Metropolis Algorithm

机译:一种基于随机游动大都会算法的经验似然估计的改进方法

获取原文

摘要

It has been proved that empirical likelihood can be a likelihood function for Bayesian analysis.Based on this discovery,we propose a random walk metropolis algorithm to estimate the maximum empirical likelihood.First,a simulation dataset is generated which take a uniform distribution as prior,and then obtain a posterior.Finally,we prove this distribution is the normal one and the max value is similar to empirical likelihood estimator by sequential quadratic programming.
机译:事实证明,经验似然性可以作为贝叶斯分析的似然函数。基于此发现,我们提出了一种随机游走大都会算法来估计最大经验似然性。首先,生成一个以均匀分布为先验的仿真数据集,最后,通过顺序二次编程证明了该分布为正态分布,且最大值与经验似然估计相似。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号