首页> 外文会议>International Geoscience and Remote Sensing Symposium >Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark
【24h】

Can semantic labeling methods generalize to any city? the inria aerial image labeling benchmark

机译:语义标记方法可以推广到任何城市吗? Inria航空影像标签基准

获取原文

摘要

New challenges in remote sensing impose the necessity of designing pixel classification methods that, once trained on a certain dataset, generalize to other areas of the earth. This may include regions where the appearance of the same type of objects is significantly different. In the literature it is common to use a single image and split it into training and test sets to train a classifier and assess its performance, respectively. However, this does not prove the generalization capabilities to other inputs. In this paper, we propose an aerial image labeling dataset that covers a wide range of urban settlement appearances, from different geographic locations. Moreover, the cities included in the test set are different from those of the training set. We also experiment with convolutional neural networks on our dataset.
机译:遥感方面的新挑战要求设计像素分类方法的必要性,一旦在某个数据集上对其进行训练,该方法便会推广到地球的其他区域。这可能包括相同类型对象外观明显不同的区域。在文献中,通常使用单个图像并将其分为训练集和测试集以分别训练分类器和评估其性能。但是,这并不能证明对其他输入的概括能力。在本文中,我们提出了一个航空影像标签数据集,该数据集涵盖了来自不同地理位置的各种城市居民点外观。此外,测试集中包含的城市与培训集中的城市不同。我们还对数据集进行了卷积神经网络实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号