首页> 外文会议>International Geoscience and Remote Sensing Symposium >A hybrid sparsity and constrained energy minimization detector for hyperspectral images
【24h】

A hybrid sparsity and constrained energy minimization detector for hyperspectral images

机译:用于高光谱图像的混合稀疏和约束能量最小化检测器

获取原文

摘要

Sparse representation has been successfully used to solve target detection problem in hyperspectral images (HSI). Compared with the traditional target detection methods, it is not fully dependent on statistical structure of the data sets. In this paper, a hybrid sparsity and constrained energy minimization (HSCEM) detector for HSI is proposed. In sparse representation, local clustering or unmixing is used to obtain the dictionary, and the greedy subspace pursuit (SP) algorithm is used for sparse representation coefficient estimation. Combining sparsity-based detector with the traditional statistics-based detection method (CEM detector), the reconstructed result rather than reconstruction error is employed to distinguish between target and background. Experimental results illustrate the outperformance of the proposed HSCEM detector over several classic statistics-based detectors and sparsity-based detectors.
机译:稀疏表示已成功用于解决高光谱图像(HSI)中的目标检测问题。与传统的目标检测方法相比,它不完全依赖于数据集的统计结构。本文提出了一种用于HSI的混合稀疏和约束能量最小化(HSCEM)检测器。在稀疏表示中,使用局部聚类或分解来获得字典,而贪婪子空间追踪算法则用于稀疏表示系数的估计。将基于稀疏度的检测器与传统的基于统计量的检测方法(CEM检测器)相结合,使用重建结果而不是重建误差来区分目标和背景。实验结果说明了所提出的HSCEM检测器优于几种经典的基于统计的检测器和基于稀疏性的检测器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号