首页> 外文会议>International Geoscience and Remote Sensing Symposium >Deforestation detection in Amazon rainforest with multitemporal X-band and p-band sar images using cross-coherences and superpixels
【24h】

Deforestation detection in Amazon rainforest with multitemporal X-band and p-band sar images using cross-coherences and superpixels

机译:使用交叉相干和超像素的多时间X波段和P波段SAR图像在亚马逊雨林中进行森林砍伐检测

获取原文

摘要

Forest monitoring is a major concern today due to climate changes, conservation of fauna and flora and to the lack of water. Therefore, several environmental monitoring techniques have been developed and used to detect changes in the scenes. The use of SAR (synthetic aperture radar) seems appropriate to detect changes due to its independence of atmospheric and lighting conditions. The SAR change detection is a process that uses SAR images acquired in the same geometric conditions but in different moments (multitemporal) to identify changes in the surface that occurred between two acquisitions. This paper presents a new method of change detection in multitemporal SAR images using X- and P-band SAR images simultaneously to calculate a change detection indicator image (binary mask) based in the coherences between all the images used as attributes calculated from superpixel segments to define a change detection neural network. Experimental tests were conducted using real SAR data obtained by the airborne sensor OrbiSAR-2 from Bradar in the Amazon Forest (Equatorial Rain Forest) and the results showed good quality detections.
机译:由于气候变化,动植物保护和缺水,今天的森林监测是一个主要问题。因此,已经开发了几种环境监视技术并将其用于检测场景中的变化。 SAR(合成孔径雷达)的使用似乎很适合检测由于大气和光照条件的独立性而引起的变化。 SAR变化检测是使用在相同几何条件下但在不同时刻(多时间)获取的SAR图像识别两次获取之间发生的表面变化的过程。本文提出了一种同时使用X波段和P波段SAR图像的多时相SAR图像中变化检测的新方法,该方法基于所有图像之间的相干性来计算变化检测指示图像(二进制掩码),这些图像用作从超像素段到定义变化检测神经网络。使用从亚马逊森林(赤道雨林)Bradar的机载传感器OrbiSAR-2获得的真实SAR数据进行了实验测试,结果表明检测质量良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号