首页> 外文会议>International Geoscience and Remote Sensing Symposium >A deep information based transfer learning method to detect annual urban dynamics of Beijing and Newyork from 1984–2016
【24h】

A deep information based transfer learning method to detect annual urban dynamics of Beijing and Newyork from 1984–2016

机译:基于深度信息的迁移学习方法,用于检测1984-2016年北京和纽约的年度城市动态

获取原文

摘要

Mapping activities of urban land change is important for human activity to Earth's dynamic change. To get the detailed information on urban development maps in large area, dense training samples are needed in different area and specific season, which is cost-consuming. To overcome this issue, we provide a transfer learning method based on deep information to extract urban areas in all season and different areas by only parts of training samples from Beijing in 1999. The proposed method, which is based on an improved recurrent neural network model, aims at: 1) learning a novel model to extract urban features with transfer ability in different areas; 2) overcoming the seasonal, annual and spatial variance to extract urban areas in all seasons; 3) learning the annual urban dynamics in two cities over 30 years simultaneously. Experiments are performed on Beijing and New York over the period from 1984 to 2016, and training samples are only used with a part of Beijing images in 1999. The results show good performances on annual urban detection results.
机译:绘制城市土地变化活动图对于人类活动与地球动态变化非常重要。为了获得大面积城市发展图的详细信息,需要在不同区域和特定季节进行密集的训练样本,这很费钱。为了克服这个问题,我们提供了一种基于深度信息的迁移学习方法,仅通过1999年北京的部分训练样本就可以提取所有季节和不同地区的城市区域。该方法基于改进的递归神经网络模型,旨在:1)学习一种新颖的模型来提取具有不同地区转移能力的城市特征; 2)克服季节,年度和空间变化,提取所有季节的市区; 3)同时了解两个城市超过30年的年度城市动态。在1984年至2016年期间对北京和纽约进行了实验,并且仅在1999年的北京图像中使用了训练样本。结果显示,在年度城市检测结果方面表现良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号