首页> 外文会议>International Congress on Big Data, Deep Learning and Fighting Cyber Terrorism >Intrusion Detection System with Recursive Feature Elimination by Using Random Forest and Deep Learning Classifier
【24h】

Intrusion Detection System with Recursive Feature Elimination by Using Random Forest and Deep Learning Classifier

机译:随机森林和深度学习分类器的递归特征消除入侵检测系统

获取原文

摘要

In this study, an intrusion detection system (IDS) has been proposed to detect malicious in computer networks. The proposed system is studied on the CICIDS2017 dataset, which is the biggest dataset available online. In order to overcome the challenges big data created, it is aimed to determine the effects of the features on the data set and to find the most effective features that can differentiate the data in the most meaningful way. Therefore, recursive feature elimination is performed via random forest and the importance value of the features are calculated. Intrusions are detected with the accuracy of 91% by Deep Multilayer Perceptron (DMLP) structure using the obtained features.
机译:在这项研究中,入侵检测系统(IDS)已被提出来检测计算机网络中的恶意软件。该系统在CICIDS2017数据集上进行了研究,该数据集是在线上最大的数据集。为了克服创建大数据所面临的挑战,其目的是确定功能部件对数据集的影响,并找到可以以最有意义的方式区分数据的最有效的功能部件。因此,通过随机森林执行递归特征消除,并计算特征的重要性值。使用获得的功能,通过深度多层感知器(DMLP)结构可以以91%的精度检测入侵。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号