首页> 外文会议>International Conference on Virtual Reality and Intelligent Systems >Fault Prediction for Satellite Communication Equipment Based on Deep Neural Network
【24h】

Fault Prediction for Satellite Communication Equipment Based on Deep Neural Network

机译:基于深度神经网络的卫星通信设备故障预测

获取原文

摘要

Aiming at the problem of fault prediction for satellite communication system, a prediction model based on deep learning is proposed in this paper. Firstly, the equipment parameters are summed up, and then two kinds of states covering normal and abnormal situations are determined. After feature learning, self-encoding network is used to obtain new features which can characterize the deep feature of the data. Then the tagged data extracted from monitoring equipment are applied to train the prediction classifier which is the combination of deep belief network and softmax classifier. The deep belief network is composed of limited Boltzmann machine as well as BP network. BP network is used for parameters adjustment. Finally, the effects of fault prediction including the performance of model and average prediction accuracy are tested through simulation.
机译:针对卫星通信系统的故障预测问题,提出了一种基于深度学习的预测模型。首先,对设备参数进行汇总,然后确定涵盖正常和异常情况的两种状态。在特征学习之后,使用自编码网络来获取可以表征数据的深层特征的新特征。然后将从监控设备中提取的标记数据应用于训练预测分类器,该预测分类器是深度置信网络和softmax分类器的组合。深度信念网络由有限的Boltzmann机器以及BP网络组成。 BP网络用于参数调整。最后,通过仿真测试了故障预测的效果,包括模型的性能和平均预测精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号