首页> 外文会议>International Conference on Systems, Man, and Cybernetics >Multiscale depth local derivative pattern for sparse representation based 3D face recognition
【24h】

Multiscale depth local derivative pattern for sparse representation based 3D face recognition

机译:基于稀疏表示的3D人脸识别的多尺度深度局部导数模式

获取原文

摘要

3D face recognition is a popular research area due to its vast application in biometrics and security. Local feature-based methods gain importance in the recent years due to their robustness under degradation conditions. In this paper, a novel high-order local pattern descriptor in combination with sparse representation based classifier (SRC) is proposed for expression robust 3D face recognition. 3D point clouds are converted to depth maps after preprocessing. Multi-directional derivatives are applied in spatial space to encode the depth maps based on the local derivative pattern (LDP) scheme. Directional pattern features are calculated according to local derivative variations. Since LDP computes spatial relationship of neighbors in a local region, it extracts distinct information from the depth map. Multiscale depth-LDP is presented as a novel descriptor for 3D face recognition. The descriptor is employed along with the SRC to increase the range data distinctiveness. A histogram on the derivative pattern creates a spatial feature descriptor that represents the distinctive micro-patterns from 3D data. We evaluate the proposed algorithm on two famous 3D face databases, FRGC v2.0 and Bosphorus. The experimental results demonstrate that the proposed approach achieves acceptable performance under facial expression.
机译:3D人脸识别由于在生物识别和安全领域的广泛应用而成为热门的研究领域。由于基于局部特征的方法在退化条件下的稳健性,因此近年来变得越来越重要。在本文中,提出了一种新颖的高阶局部模式描述符与基于稀疏表示的分类器(SRC)相结合,以实现鲁棒的3D人脸识别。预处理后,将3D点云转换为深度图。基于局部导数模式(LDP)方案,将多方向导数应用于空间空间以对深度图进行编码。根据局部导数变化来计算方向性图案特征。由于LDP计算本地区域中邻居的空间关系,因此LDP从深度图提取不同的信息。提出了多尺度深度LDP作为3D人脸识别的新型描述符。描述符与SRC一起使用以增加范围数据的独特性。导数图案上的直方图会创建一个空间特征描述符,该描述符表示来自3D数据的独特微图案。我们在两个著名的3D人脸数据库FRGC v2.0和Bosphorus上评估了该算法。实验结果表明,该方法在面部表情下达到了可接受的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号