首页> 外文会议>International Conference on Speech and Computer >A Comparative Study of Classical and Deep Classifiers for Textual Addressee Detection in Human-Human-Machine Conversations
【24h】

A Comparative Study of Classical and Deep Classifiers for Textual Addressee Detection in Human-Human-Machine Conversations

机译:人机对话中文本收件人的经典分类器和深度分类器的比较研究

获取原文

摘要

The problem of addressee detection (AD) arises in multiparty conversations involving several dialogue agents. In order to maintain such conversations in a realistic manner, an automatic spoken dialogue system is supposed to distinguish between computer- and human-directed utterances since the latter utterances either need to be processed in a specific way or should be completely ignored by the system. In the present paper, we consider AD to be a text classification problem and model three aspects of users' speech (syntactical, lexical, and semantical) that are relevant to AD in German. We compare simple classifiers operating with supervised text representations learned from in-domain data and more advanced neural network-based models operating with unsupervised text representations learned from in- and out-of-domain data. The latter models provide a small yet significant AD performance improvement over the classical ones on the Smart Video Corpus. A neural network-based semantical model determines the context of the first four words of an utterance to be the most informative for AD, significantly surpasses syntactical and lexical text classifiers and keeps up with a baseline multimodal metaclassifier that utilises acoustical information in addition to textual data. We also propose an effective approach to building representations for out-of-vocabulary words.
机译:在涉及多个对话代理的多方对话中出现了收件人检测(AD)问题。为了以现实的方式保持这种对话,应该使用自动语音对话系统来区分计算机和人为引导的话语,因为后者的话或者需要以特定的方式处理,或者应该被系统完全忽略。在本文中,我们将AD视为文本分类问题,并在德语中对用户语音的三个方面(句法,词汇和语义)进行建模。我们将简单的分类器与从域内数据中学习的监督文本表示进行操作,并比较基于高级神经网络的模型与从域内和域外数据中学习的无监督文本表示进行操作。与Smart Video Corpus上的传统模型相比,后一种模型在AD性能上有小幅改进,但有很大的改进。基于神经网络的语义模型将发声的前四个单词的上下文确定为对AD最有用的信息,大大超过了句法和词汇文本分类器,并且跟上了基线多峰元分类器,该基线多模态元分类器在文本数据之外还利用了声学信息。我们还提出了一种有效的方法来建立词汇外单词的表示形式。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号