【24h】

Information criterion for variational Bayes learning in regular and singular cases

机译:规则和奇异情况下变分贝叶斯学习的信息准则

获取原文

摘要

Variational Bayes learning gives the accurate statistical estimation as Bayes learning with smaller computational cost. However, it has been difficult to estimate its generalization loss, because learning machines used in variational Bayes are not regular but singular, resulting that the conventional information criteria such as AIC, BIC, or DIC can not be applied. In this paper, we propose a new information criterion for variational Bayes learning, which is the unbiased estimator of the generalization loss for both cases when the posterior distribution is regular and singular. We show the theoretical support of the proposed information criterion, and its effectiveness is illustrated by numerical experiments.
机译:与贝叶斯学习相比,变分贝叶斯学习可以提供更精确的统计估计,而计算成本却更低。然而,由于变分贝叶斯中使用的学习机器不是规则的而是奇异的,因此难以估计其泛化损失,从而导致无法应用诸如AIC,BIC或DIC之类的常规信息标准。在本文中,我们提出了一种新的变分贝叶斯学习信息准则,当后验分布为正则和奇异时,这是两种情况下泛化损失的无偏估计。我们展示了提出的信息标准的理论支持,并通过数值实验说明了其有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号