【24h】

Predicting the Impact of Central Bank Communications on Financial Market Investors' Interest Rate Expectations

机译:预测中央银行通讯对金融市场投资者的利率预期的影响

获取原文

摘要

Abstract In this paper, we design an automated system that predicts the impact of central bank communications on investors' interest rate expectations. Our corpus is the Bank of England's 'Monetary Policy Committee Minutes'. Prior studies suggest that effective communications can mitigate a financial crisis; ineffective communications may exacerbate one. The system described here works in four phases. First, the system employs background knowledge from Wikipedia to identify salient aspects for central bank policy associated with economic growth, prices, interest rates and bank lending. These economic aspects are detected using the TextRank link analysis algorithm. A multinomial Naive Bayesian model then classifies sentences from central bank documents to these aspects. The second phase measures sentiment using a count of terms from the General Inquirer dictionary. The third phase employs Latent Dirichlet Allocation (LDA) to infer topic clusters that may act as intensifiers/diminishers of sentiment associated with the economic aspects. Finally, an ensemble tree combines the phases to predict the impact of the communications on financial market interest rates.
机译:摘要在本文中,我们设计了一个自动化系统,该系统可以预测中央银行通信对投资者利率预期的影响。我们的主体是英格兰银行的“货币政策委员会会议纪要”。先前的研究表明,有效的沟通可以缓解金融危机。无效的沟通可能会加剧这种情况。此处描述的系统分为四个阶段。首先,该系统利用Wikipedia的背景知识来确定与经济增长,价格,利率和银行贷款相关的中央银行政策的重要方面。这些经济方面可以使用TextRank链接分析算法进行检测。然后,多项式朴素贝叶斯模型将来自中央银行单据的句子分类到这些方面。第二阶段使用“一般询问者”词典中的术语计数来衡量情绪。第三阶段采用潜在狄利克雷分配(LDA)来推断主题集群,这些集群可以充当与经济方面相关的情绪增强/减弱因素。最后,合奏树将这些阶段组合在一起,以预测通信对金融市场利率的影响。

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号