首页> 外文会议>International Conference on Security, Privacy, and Anonymity in Computation, Communication, and Storage >Naïve Approach for Bounding Box Annotation and Object Detection Towards Smart Retail Systems
【24h】

Naïve Approach for Bounding Box Annotation and Object Detection Towards Smart Retail Systems

机译:面向智能零售系统的边界注释和对象检测的简单方法

获取原文

摘要

It is becoming a trend that companies use smart retail stores to reduce the selling cost, by using the sensor technologies. Deep con-volutional neural network models which are pre-rained for the Object, detection task achieve state-of-the-art result in many benchmark. However, when applying these algorithms to the intelligent retail system to help automated checkout, we need to reduce the manual labelling cost of making retail data sets, and to achieve real-time demand while ensuring accuracy. In our paper, we propose a naive approach to get first portion of the bounding box annotations for a given custom image dataset in order to reduce manual cost. Experimental results show that our approach helps to label the first set of images in short time of period. Further, the custom module we designed helped to reduce the number of parameters by 41.77% for the YOLO model maintaining the original model's accuracy (85.8 mAP).
机译:公司使用智能零售商店通过使用传感器技术来降低销售成本已成为一种趋势。针对对象检测任务预先开发的深度卷积神经网络模型在许多基准测试中均达到了最新水平。但是,将这些算法应用于智能零售系统以帮助自动结帐时,我们需要减少制作零售数据集的人工标签成本,并在确保准确性的同时达到实时需求。在我们的论文中,我们提出了一种幼稚的方法来获取给定自定义图像数据集的边界框注释的第一部分,以减少人工成本。实验结果表明,我们的方法有助于在短时间内标记第一组图像。此外,我们设计的定制模块有助于将YOLO模型的参数数量减少41.77%,从而保持原始模型的精度(85.8 mAP)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号