首页> 外文会议>International Conference on Robotics and Automation >Egocentric Vision-based Future Vehicle Localization for Intelligent Driving Assistance Systems
【24h】

Egocentric Vision-based Future Vehicle Localization for Intelligent Driving Assistance Systems

机译:基于自我中心视觉的智能驾驶辅助系统未来车辆定位

获取原文

摘要

Predicting the future location of vehicles is essential for safety-critical applications such as advanced driver assistance systems (ADAS) and autonomous driving. This paper introduces a novel approach to simultaneously predict both the location and scale of target vehicles in the first-person (egocentric) view of an ego-vehicle. We present a multi-stream recurrent neural network (RNN) encoder-decoder model that separately captures both object location and scale and pixel-level observations for future vehicle localization. We show that incorporating dense optical flow improves prediction results significantly since it captures information about motion as well as appearance change. We also find that explicitly modeling future motion of the ego-vehicle improves the prediction accuracy, which could be especially beneficial in intelligent and automated vehicles that have motion planning capability. To evaluate the performance of our approach, we present a new dataset of first-person videos collected from a variety of scenarios at road intersections, which are particularly challenging moments for prediction because vehicle trajectories are diverse and dynamic. Code and dataset have been made available at: https://usa.honda-ri.com/hevi.
机译:对于安全性至关重要的应用(例如高级驾驶员辅助系统(ADAS)和自动驾驶),预测车辆的未来位置至关重要。本文介绍了一种新颖的方法,可同时在自我车辆的第一人称视角(以自我为中心)中预测目标车辆的位置和规模。我们提出了一种多流递归神经网络(RNN)编码器/解码器模型,该模型分别捕获对象的位置和比例以及像素级别的观测值,以用于将来的车辆定位。我们表明,合并密集的光流可显着改善预测结果,因为它捕获了有关运动以及外观变化的信息。我们还发现,显式地对自我车辆的未来运动进行建模可以提高预测准确性,这在具有运动计划功能的智能和自动化车辆中尤其有利。为了评估我们的方法的性能,我们提供了一个新的第一人称视频数据集,该数据集是从道路交叉口的各种场景中收集的,由于车辆的轨迹是多样且动态的,因此对于预测尤其具有挑战性。代码和数据集已在以下网址提供:https://usa.honda-ri.com/hevi。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号