首页> 外文会议>International Conference on Robotics and Automation >Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds
【24h】

Hierarchical Depthwise Graph Convolutional Neural Network for 3D Semantic Segmentation of Point Clouds

机译:点云的3D语义分层层次深度图卷积神经网络

获取原文

摘要

This paper proposes a hierarchical depthwise graph convolutional neural network (HDGCN) for point cloud semantic segmentation. The main chanllenge for learning on point clouds is to capture local structures or relationships. Graph convolution has the strong ability to extract local shape information from neighbors. Inspired by depthwise convolution, we propose a depthwise graph convolution which requires less memory consumption compared with the previous graph convolution. While depthwise graph convolution aggregates features channel-wisely, pointwise convolution is used to learn features across different channels. A customized block called DGConv is specially designed for local feature extraction based on depthwise graph convolution and pointwise convolution. The DGConv block can extract features from points and transfer features to neighbors while being invariant to different point orders. HDGCN is constructed by a series of DGConv blocks using a hierarchical structure which can extract both local and global features of point clouds. Experiments show that HDGCN achieves the state-of-the-art performance in the indoor dataset S3DIS and the outdoor dataset Paris-Lille-3D.
机译:本文提出了一种用于点云语义分割的层次深度图卷积神经网络(HDGCN)。学习点云的主要挑战是捕获局部结构或关系。图卷积具有从邻居中提取局部形状信息的强大能力。受深度卷积的启发,我们提出了一种深度图卷积,与之前的图卷积相比,它需要更少的内存消耗。深度图卷积在通道上聚合特征,而点卷积用于跨不同通道学习特征。一个定制的块DGConv是专门为基于深度图卷积和点向卷积的局部特征提取而设计的。 DGConv块可以从点提取特征并将特征转移到邻居,同时不变地改变不同的点顺序。 HDGCN由一系列DGConv块使用分层结构构造而成,该结构可以提取点云的局部和全局特征。实验表明,HDGCN在室内数据集S3DIS和室外数据集Paris-Lille-3D中达到了最先进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号