首页> 外文会议>International Conference on Robotics and Automation >GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks
【24h】

GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks

机译:GANVO:生成对抗网络的无监督深层单眼视觉测程和深度估计

获取原文

摘要

In the last decade, supervised deep learning approaches have been extensively employed in visual odometry (VO) applications, which is not feasible in environments where labelled data is not abundant. On the other hand, unsupervised deep learning approaches for localization and mapping in unknown environments from unlabelled data have received comparatively less attention in VO research. In this study, we propose a generative unsupervised learning framework that predicts 6-DoF pose camera motion and monocular depth map of the scene from unlabelled RGB image sequences, using deep convolutional Generative Adversarial Networks (GANs). We create a supervisory signal by warping view sequences and assigning the re-projection minimization to the objective loss function that is adopted in multi-view pose estimation and single-view depth generation network. Detailed quantitative and qualitative evaluations of the proposed framework on the KITTI [1] and Cityscapes [2] datasets show that the proposed method outperforms both existing traditional and unsupervised deep VO methods providing better results for both pose estimation and depth recovery.
机译:在过去的十年中,有监督的深度学习方法已在视觉里程计(VO)应用中广泛采用,这在标签数据不丰富的环境中不可行。另一方面,在VO环境研究中,来自未标记数据的用于未知环境中的定位和映射的无监督深度学习方法受到的关注相对较少。在这项研究中,我们提出了一种生成式无监督学习框架,该框架使用深度卷积生成对抗网络(GAN)从未标记的RGB图像序列中预测6自由度姿势照相机运动和场景的单眼深度图。我们通过扭曲视图序列并将重投影最小化分配给多视图姿态估计和单视图深度生成网络中采用的目标损失函数来创建监控信号。在KITTI [1]和Cityscapes [2]数据集上对拟议框架进行的详细定量和定性评估表明,所提出的方法优于现有的传统和无监督的深度VO方法,从而为姿态估计和深度恢复提供了更好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号