首页> 外文会议>International Conference on Principles and Practice of Constraint Programming >Peak-Hour Rail Demand Shifting with Discrete Optimisation
【24h】

Peak-Hour Rail Demand Shifting with Discrete Optimisation

机译:离散优化的高峰时铁路需求转移

获取原文

摘要

In this work we consider an information-based system to reduce metropolitan rail congestion in Melbourne, Australia. Existing approaches aim to reduce congestion by asking commuters to travel outside of peak times. We propose an alternative approach where congestion is reduced by enabling commuters to make an informed trade-off between travel time and ride comfort. Our approach exploits the differences in train frequency and stopping patterns between stations that results in trains, arriving within a short time of each other, to have markedly different levels of congestion, even during peak travel periods. We show that, in such cases, commuters can adjust their departure and arrival time by a small amount (typically under 10 min) in exchange for more comfortable travel. We show the potential benefit of making this trade-off with a discrete optimisation model which attempts to redistribute passenger demand across neighbouring services to improve passenger ride comfort overall. Computational results show that even at low to moderate levels of passenger take-up, our method of demand shifting has the potential to significantly reduce congestion across the rail corridor studied, with implications for the metropolitan network more generally.
机译:在这项工作中,我们考虑一种基于信息的系统来减少澳大利亚墨尔本的都会铁路拥堵。现有的方法旨在通过要求通勤者在高峰时间以外旅行来减少拥堵。我们提出了一种替代方法,通过使通勤者能够在旅行时间和乘坐舒适性之间做出明智的权衡来减少拥堵。我们的方法利用了车站之间列车频率和停车方式的差异,导致列车在彼此之间的短时间内到达,即使在高峰旅行期间,拥堵程度也明显不同。我们证明,在这种情况下,通勤者可以少量(通常少于10分钟)调整出发和到达时间,以换取更舒适的旅行。我们展示了使用离散优化模型进行权衡的潜在好处,该模型试图在相邻服务之间重新分配乘客需求,从而总体上改善乘客的乘坐舒适性。计算结果表明,即使在乘客乘坐量较低至中等的水平下,我们的需求转移方法也有可能显着减少所研究的铁路走廊的拥挤状况,这对大都会网络具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号