首页> 外文会议>International Conference on Power System Technology >Research on Fault Diagnosis of Switchgear Contacts Based on BP Neural Network
【24h】

Research on Fault Diagnosis of Switchgear Contacts Based on BP Neural Network

机译:基于BP神经网络的开关设备触头故障诊断研究。

获取原文

摘要

The switchgear is the key equipment in the power system. The overheating of the switchgear contacts is the main cause of the failure of the switchgear. Since the switchgear is relatively closed so that the internal contacts cannot be directly measured, which need to push out the contact status through a portion that is easy to measure. Therefore, this paper uses the collected temperature of the infrared window to push out the contacts temperature based on the BP neural network to determine whether the switchgear contacts are faulty. Firstly, the ANSYS Workbench finite element software is used to simulate the switchgear and obtain the contacts temperature and infrared window measurement temperature as the BP neural network test data. Then, the BP neural network model is trained to determine the model parameters. Finally, the trained BP model is used to test and determine the accuracy of the fault diagnosis of the switchgear contacts based on the BP model. The experimental results show that the maximum error between the expected data and the predicted data based on the BP neural network model does not exceed 1. 5 °C, which is within the normal range. Therefore, based on this model, the operation and maintenance staff can acquire the contacts state of the switchgear by measuring the infrared window temperature. It is of great significance to the safe operation of the switchgear.
机译:开关柜是电力系统中的关键设备。开关柜触点的过热是开关柜故障的主要原因。由于开关设备是相对闭合的,因此内部触点不能直接测量,这需要通过易于测量的部分推出触点状态。因此,本文利用红外窗口的采集温度,基于BP神经网络推出触点温度,从而确定开关柜触点是否有故障。首先,使用ANSYS Workbench有限元软件对开关设备进行仿真,并获得触点温度和红外窗口测量温度作为BP神经网络测试数据。然后,训练BP神经网络模型以确定模型参数。最后,将训练后的BP模型用于基于BP模型测试和确定开关柜触点故障诊断的准确性。实验结果表明,基于BP神经网络模型的预期数据与预期数据之间的最大误差不超过1. 5°C,这在正常范围内。因此,在该模型的基础上,运维人员可以通过测量红外窗口温度来获取开关柜的接触状态。这对开关柜的安全操作具有重要意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号