首页> 外文会议>International Conference on Power System Technology >Post-fault Transient Stability Assessment Based on k-Nearest Neighbor Algorithm with Mahalanobis Distance
【24h】

Post-fault Transient Stability Assessment Based on k-Nearest Neighbor Algorithm with Mahalanobis Distance

机译:基于k近邻算法的马氏距离的故障后暂态稳定性评估

获取原文

摘要

To enhance the security of power system, fast and accurate transient stability assessment methods are highly in demand. Many works have been done to explore the stability classification by searching and matching based on the post-fault PMU measurement data. Generally, the Euclidean distance is adopted to evaluate the similarity of different time series data. However, the correlation of the sample attributes is ignored in the classifier based on Euclidean distance. Besides, due to the imbalance feature of the transient stability assessment, costs of false classifications are unequal. For example, classifying the stable samples into unstable ones introduces less operational risks than classifying unstable samples into the stable. To handle above technique challenges, this paper proposes a k -Nearest Neighbor algorithm using Mahalanobis distance for transient stability assessments, in which the correlation of critical time series data is carefully considered. To strengthen the cost-sensitive feature of the proposed classifier, training processes are optimized regarding an area under the curve index. Finally, a case study is presented where the IEEE 10-machine 39-bus system is used for tests. Results of classifiers with different distance are compared. Test results validate the efficacy of the proposed k-Nearest Neighbor algorithm using Mahalanobis distance. Besides, it is also demonstrated that using Mahalanobis distance, the stability assessment can be accurate and robust even only based on a few measured states in form of time series data.
机译:为了提高电力系统的安全性,急需快速,准确的暂态稳定评估方法。通过基于故障后PMU测量数据的搜索和匹配,已经进行了许多工作来探索稳定性分类。通常,采用欧几里得距离来评估不同时间序列数据的相似性。但是,基于欧几里得距离的分类器会忽略样本属性的相关性。此外,由于暂态稳定性评估的不平衡特征,错误分类的成本是不平等的。例如,将稳定样本分类为不稳定样本所带来的操作风险要比将不稳定样本分类为稳定样本所带来的操作风险要小。为了应对上述技术挑战,本文提出了一种使用马氏距离的k最近邻算法进行暂态稳定性评估,其中仔细考虑了关键时间序列数据的相关性。为了加强拟议分类器的成本敏感功能,针对曲线索引下的区域优化了训练过程。最后,介绍了一个案例研究,其中使用IEEE 10机39总线系统进行测试。比较具有不同距离的分类器的结果。测试结果验证了使用马哈拉诺比斯距离提出的k最近邻算法的有效性。此外,还证明了使用马哈拉诺比斯距离,即使仅基于时间序列数据形式的少数测量状态,稳定性评估也可以是准确而可靠的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号