首页> 外文期刊>Power Systems, IEEE Transactions on >Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction Using Synchronized Measurements
【24h】

Support Vector Machine-Based Algorithm for Post-Fault Transient Stability Status Prediction Using Synchronized Measurements

机译:基于支持向量机的同步测量故障后暂态稳定状态算法

获取原文
获取原文并翻译 | 示例

摘要

The paper first shows that the transient stability status of a power system following a large disturbance such as a fault can be early predicted based on the measured post-fault values of the generator voltages, speeds, or rotor angles. Synchronously sampled values provided by phasor measurement units (PMUs) of the generator voltages, frequencies, or rotor angles collected immediately after clearing a fault are used as inputs to a support vector machines (SVM) classifier which predicts the transient stability status. Studies with the New England 39-bus test system and the Venezuelan power network indicated that faster and more accurate predictions can be made by using the post-fault recovery voltage magnitude measurements as inputs. The accuracy and robustness of the transient stability prediction algorithm with the voltage magnitude measurements was extensively tested under both balanced and unbalanced fault conditions, as well as under different operating conditions, presence of measurement errors, voltage sensitive loads, and changes in the network topology. During the various tests carried out using the New England 39-bus test system, the proposed algorithm could always predict when the power system is approaching a transient instability with over 95% success rate.
机译:该论文首先表明,可以基于发电机电压,速度或转子角的故障后测得值,提前预测出电力系统在发生诸如故障之类的大干扰之后的暂态稳定状态。由故障清除后立即收集的发电机电压,频率或转子角的相量测量单元(PMU)提供的同步采样值用作支持向量机(SVM)分类器的输入,该分类器可预测暂态稳定状态。对新英格兰39总线测试系统和委内瑞拉电网的研究表明,通过使用故障后恢复电压幅度测量作为输入,可以做出更快,更准确的预测。在平衡和非平衡故障条件下,以及在不同的工作条件,存在测量误差,电压敏感负载以及网络拓扑变化的情况下,均对瞬态稳定性预测算法的电压幅度测量的准确性和鲁棒性进行了广泛测试。在使用新英格兰39总线测试系统进行的各种测试过程中,提出的算法始终可以预测电力系统何时达到瞬态不稳定性,且成功率超过95%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号