首页> 外文会议>International Conference on Power System Technology >An improved Convolutional Neural Network used in abnormality identification of Indicating Lighting in Cable Tunnels
【24h】

An improved Convolutional Neural Network used in abnormality identification of Indicating Lighting in Cable Tunnels

机译:改进的卷积神经网络在电缆隧道指示灯异常识别中的应用

获取原文

摘要

This paper proposes a method to identify the equipment anomalies based on convolution neural network, aiming at the weak-light situation inside the cable tunnel. This paper has proposed a method to identify the equipment anomalies with weak light situation inside the cable tunnel, based on the convolution neural network. On the basis of the gray image, this method adds the Sobel operator to enhance edge-preprocessing effect and start training through Convolution Neural Network (CNN). The convergence criteria is the Loss Function related with the Weight Parameter W and Bias Parameter b. The convergence method is the one named Backpropagation, which updates the parameters each time to reduce the loss. The fast operating speed of full connection layer can help getting the direct classification result of equipment status in the image. Based on the experimental analysis of the internal images of the Zhuhai tunnel, it can be seen that this method is suitable for the dark and chaotic environment of the tunnel. Additionally, it has a high recognition rate for the image segmentation of the lighting equipment and a high accuracy for the classification of the abnormal situation of the image.
机译:针对电缆隧道内的弱光情况,提出了一种基于卷积神经网络的设备异常识别方法。本文提出了一种基于卷积神经网络的弱光区域设备异常情况识别方法。该方法在灰度图像的基础上增加了Sobel算子,以增强边缘预处理效果,并通过卷积神经网络(CNN)开始训练。收敛标准是与权重参数W和偏置参数b相关的损失函数。收敛方法是一种称为反向传播的方法,它每次都会更新参数以减少损耗。全连接层的快速运行速度可以帮助获得图像中设备状态的直接分类结果。通过对珠海隧道内部图像的实验分析,可以看出该方法适用于隧道的黑暗和混沌环境。另外,它对于照明设备的图像分割具有很高的识别率,并且对于图像异常情况的分类具有很高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号