首页> 外文会议>International Conference on Power System Technology >Equivalent Modeling of Distributed Photovoltaic Power Station Clusters Based on Deep Belief Network
【24h】

Equivalent Modeling of Distributed Photovoltaic Power Station Clusters Based on Deep Belief Network

机译:基于深信度网络的分布式光伏电站集群等效建模

获取原文

摘要

This paper presents a novel equivalent modeling method for distributed photovoltaic (PV) power station clusters. Deep Learning (DL) is proposed to PV power station clusters modeling and the training algorithm is Deep Belief Network (DBN) made up of multiple layers of restricted Boltzmann machines (RBM). A DBN algorithm is applied to dynamic equivalent modeling of PV clusters after first-step clustering using the improved K-means algorithm. The input variables of the neural network are irradiance variation, voltage fluctuation, reactive power reference of the dual-loop controller, the output active and reactive power of PV clusters. The output variables are the output active and reactive power of PV clusters. The datasets are obtained through 6560 experiments. Then a layer-by-layer unsupervised learning method is used to pre-train the network followed by fine-tuning the parameters using a supervised back-propagation (BP) method. Finally, the equivalent model of PV clusters based on DBN is built and applied to a typical distribution network in Anhui Province. The validity and accuracy of the proposed model are verified in three different disturbance cases. At the same time, the computational complexity and the simulation time are reduced using the proposed model significantly.
机译:本文提出了一种新的等效的分布式光伏电站群建模方法。将深度学习(DL)应用于光伏电站集群建模,其训练算法是由多层受限Boltzmann机器(RBM)组成的深度信念网络(DBN)。使用改进的K均值算法在第一步聚类之后,将DBN算法应用于PV聚类的动态等效建模。神经网络的输入变量是辐照度变化,电压波动,双环控制器的无功功率参考,PV群集的输出有功功率和无功功率。输出变量是PV群集的输出有功功率和无功功率。数据集是通过6560个实验获得的。然后,使用逐层非监督学习方法对网络进行预训练,然后使用监督反向传播(BP)方法对参数进行微调。最后,建立了基于DBN的光伏集群等效模型,并将其应用于安徽省典型的配电网络。在三种不同的扰动情况下,验证了所提模型的有效性和准确性。同时,使用所提出的模型显着降低了计算复杂度和仿真时间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号