首页> 外文会议>International Conference on Pattern Analysis and Intelligent Systems >Intrusion Detection using Data Mining: A contemporary comparative study
【24h】

Intrusion Detection using Data Mining: A contemporary comparative study

机译:使用数据挖掘进行入侵检测:当代比较研究

获取原文

摘要

Intrusion detection systems play a crucial rule in this era where networks reached almost any sector. Unfortunately, intrusion detection systems are far from perfectness. Therefore, researchers never stopped digging deeper to improve them. In this context, data mining techniques have been highly exploited for intrusion detection. In this paper, we present a comparative study of data mining techniques for intrusion detection. Specifically, we study the overall performances of those methods as well as the impact of training data size on their results. We use ISCX2012 as a benchmark for our experimentation. A realistic dataset that represents at a certain level today's network traffic. The study shows that relatively old methods outperform some of the techniques highly used actually by the community. Regarding the impact of training dataset size, the investigated methods react differently from each other when we add more data to the training dataset. In addition, the results highlight the importance of attack traffic in the training dataset. Moreover, they strongly suggest the use of Random Forest for intrusion detection due to its linear performance relation with the training dataset's size.
机译:入侵检测系统在网络几乎到达任何部门的这个时代起着至关重要的规则。不幸的是,入侵检测系统远非完美。因此,研究人员从未停止深入研究以改进它们。在这种情况下,数据挖掘技术已被广泛用于入侵检测。在本文中,我们对用于入侵检测的数据挖掘技术进行了比较研究。具体来说,我们研究了这些方法的整体性能以及训练数据量对其结果的影响。我们将ISCX2012用作实验的基准。一个现实的数据集,在某种程度上代表了当今的网络流量。研究表明,相对较旧的方法优于社区实际使用的某些技术。关于训练数据集大小的影响,当我们向训练数据集添加更多数据时,研究方法的反应彼此不同。此外,结果突出了训练数据集中攻击流量的重要性。此外,他们强烈建议将随机森林用于入侵检测,因为它与训练数据集的大小呈线性关系。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号