首页> 外文会议>International conference on parallel architectures and compilation techniques >Base-Delta-lmmediate Compression: Practical Data Compression for On-Chip Caches
【24h】

Base-Delta-lmmediate Compression: Practical Data Compression for On-Chip Caches

机译:基本增量压缩:片上缓存的实用数据压缩

获取原文

摘要

Cache compression is a promising technique to increase on-chip cache capacity and to decrease on-chip and off-chip bandwidth usage. Unfortunately, directly applying well-known compression algorithms (usually implemented in software) leads to high hardware complexity and unacceptable decompression/compression latencies, which in turn can negatively affect performance. Hence, there is a need for a simple yet efficient compression technique that can effectively compress common in-cache data patterns, and has minimal effect on cache access latency. In this paper, we introduce a new compression algorithm called Base-Delta-lmmediate (B△I) compression, a practical technique for compressing data in on-chip caches. The key idea is that, for many cache lines, the values within the cache line have a low dynamic range - i.e., the differences between values stored within the cache line are small. As a result, a cache line can be represented using a base value and an array of differences whose combined size is much smaller than the original cache line (we call this the base+delta encoding). Moreover, many cache lines intersperse such base+delta values with small values - our B△I technique efficiently incorporates such immediate values into its encoding. Compared to prior cache compression approaches, our studies show that B△I strikes a sweet-spot in the tradeoff between compression ratio, decompression/compression latencies, and hardware complexity. Our results show that B△I compression improves performance for both single-core (8.1% improvement) and multi-core workloads (9.5% / 11.2% improvement for two/four cores). For many applications, B△I provides the performance benetlt of doubling the cache size of the baseline system, effectively increasing average cache capacity by 1.53X.
机译:高速缓存压缩是一种有前途的技术,可以增加片上高速缓存的容量并减少片上和片外带宽的使用。不幸的是,直接应用众所周知的压缩算法(通常在软件中实现)会导致较高的硬件复杂性和不可接受的解压缩/压缩时延,进而会对性能产生负面影响。因此,需要一种简单而有效的压缩技术,该技术可以有效地压缩常见的缓存中数据模式,并且对缓存访问延迟的影响最小。在本文中,我们介绍了一种称为Base-Delta-mediamedia(B△I)压缩的新压缩算法,这是一种用于压缩片上缓存中数据的实用技术。关键思想是,对于许多高速缓存行,高速缓存行内的值具有较低的动态范围-即,高速缓存行内存储的值之间的差异很小。结果,可以使用基值和差异数组来表示一条缓存行,这些差异的组合大小比原始缓存行小得多(我们称此为base + delta编码)。此外,许多高速缓存行将这样的基数+增量值散布在较小的值中-我们的B△I技术将此类立即值有效地合并到其编码中。与以前的高速缓存压缩方法相比,我们的研究表明B△I在压缩率,解压缩/压缩延迟和硬件复杂性之间的折衷中达到了最佳效果。我们的结果表明,B△I压缩可提高单核(改进8.1%)和多核工作负载(两/四个核分别提高9.5%/ 11.2%)的性能。对于许多应用程序而言,B△I的性能将使基准系统的缓存大小增加一倍,从而有效地将平均缓存容量提高了1.53倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号