首页> 外文会议>International conference on numerical geometry, grid generation and scientific computing >Optimal Non-adaptive Approximation of Convex Bodies by Polytopes
【24h】

Optimal Non-adaptive Approximation of Convex Bodies by Polytopes

机译:多面体的凸体最优非自适应逼近

获取原文

摘要

In this paper we consider the problem of constructing numerical algorithms for approximating of convex compact bodies in d-dimensional Euclidean space by polytopes with any given accuracy. It is well known that optimal with respect to the order algorithms produce polytopes for which the accuracy in Hausdorff metric is inversely proportional to the number of vertices (faces) in the degree of 2/(d — 1). Numerical approximation algorithms can be adaptive (active) when the vertices or faces are constructed successively, depending on the information obtained in the process of approximation, and non-adaptive (passive) when parameters of algorithms are defined on the basis of a priory information available. Approximation algorithms differ in the use of operations applied to the approximated body. Most common are indicator, support and distance (Minkowski) functions calculations. Some optimal active algorithms for arbitrary bodies approximation are known using support or distance function calculation operation. Optimal passive algorithms for smooth bodies approximation are known using support function calculation operation and extremal curvature information. It is known that there are no optimal non-adaptive algorithms for arbitrary bodies approximation using support function calculation operation. We consider optimal non-adaptive algorithms for arbitrary bodies approximation using projection function calculation operation.
机译:在本文中,我们考虑了构造数值算法以通过任意给定精度的多边形逼近d维欧几里得空间中的凸紧凑体的问题。众所周知,关于阶数算法的最优方案产生了多面体,其Hausdorff度量的精度与顶点(面)的数量成2 /(d_1)的程度成反比。当根据近似过程中获得的信息连续构造顶点或面时,数值逼近算法可以是自适应的(主动的),而根据可用的先验信息来定义算法的参数时,数值逼近的算法可以是非自适应的(被动的) 。近似算法在应用于近似主体的操作使用上有所不同。最常见的是指标,支持和距离(Minkowski)函数计算。使用支持或距离函数计算操作已知一些用于任意物体逼近的最佳主动算法。使用支持函数计算操作和极值曲率信息可以知道用于平滑物体逼近的最佳无源算法。已知对于使用支持函数计算操作的任意物体逼近,没有最优的非自适应算法。我们考虑使用投影函数计算操作对任意物体逼近的最佳非自适应算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号