首页> 外文会议>International Conference on Network Infrastructure and Digital Content >Anomaly Detection for Key Performance Indicators Through Machine Learning
【24h】

Anomaly Detection for Key Performance Indicators Through Machine Learning

机译:通过机器学习对关键绩效指标的异常检测

获取原文

摘要

The data center and servers generates a large amount of monitoring data and logs every day. With the rapid development of the Internet, web services have penetrated into all areas of society. The stability of the Web services depends on IT operations to guarantee, operations staff through the monitoring of various key performance indicators (KPIs) to judge whether the Web service is stable or not. We want to use the statistical and machine learning methods to detect anomalous. In this paper, we split the problem into two parts. In the first place, we use time series analysis method such as Triple Order Exponential Smoothing (Holt-Winters) and ARIMA model and regression-based machine learning techniques such as Gradient Boosting Regression Trees (GBRT) and Long Short-Term Memory (LSTM) to predict the value at the next point in the time series. After that, we set the anomaly detection rule. Finally we compare the predicted value with actual value to determine whether the current point is anomalous or not.
机译:数据中心和服务器每天都会生成大量监视数据和日志。随着Internet的飞速发展,Web服务已经渗透到社会的各个领域。 Web服务的稳定性取决于IT操作的保证,操作人员可以通过监视各种关键性能指标(KPI)来判断Web服务是否稳定。我们想使用统计和机器学习方法来检测异常。在本文中,我们将问题分为两部分。首先,我们使用时间序列分析方法(例如三阶指数平滑(Holt-Winters)和ARIMA模型)以及基于回归的机器学习技术(例如,梯度增强回归树(GBRT)和长短期记忆(LSTM))以预测时间序列中下一个点的值。之后,我们设置异常检测规则。最后,我们将预测值与实际值进行比较,以确定当前点是否异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号